关闭

如何进行有效需求分析(5)数据篇

需求分析系列的最后一篇文章了,接下来我会为大家准备送书福利,用以感谢大家一直以来的支持。

欢迎来到大型情感类专题:如何进行有效需求分析:数据篇!

我们在需求分析系列的第一篇中就提到过,功能主线梳理的其中一个角度就是管理支持,而管理支持又包含了三方面:事前风险避免,通过增加“管理流程”;事中风险控制,通过“规则”和“审批”;事后总结优化,通过“数据分析”。事前与事中两个阶段,我们已经在“流程篇”中讨论过了,今天我们一起来探究一下事后阶段的数据分析,有着怎样的奥秘。


内容回顾

两周的时间过去了,业务场景讲述了哪些内容,小伙伴们还记得么?先让我们一起来回顾一下吧。

  • 业务场景的意义:价值传递的介质,沟通交流的基准;

  • 业务场景的两种呈现形式:用户故事和用例图;

  • 业务场景的分析方法:场景—挑战—方案三步法;

第一步,场景细化:将场景细化为事件流,先整理出用户预期的正常步骤,然后写出变化的情况;

第二步,问题/挑战识别:针对每一步骤,站在用户的角度来思考他们会遇到什么问题,面对什么样的挑战;

第三步,思考应对方案:针对这些问题,思考系统应该提供什么样的解决方案。

数据与信息


风起于青萍之末。想要对数据进行研究,首先我们需要先厘清数据与信息之间的关系。

我们在“场景篇”中讨论了关于在线旅游服务网站的内容,并且在用户不知道准备哪些相应行李的场景下,在解决方案中提出了“天气预报”的功能,就让我们来继续这个课题的研究。

提到“天气预报”,我们首先想到的,应该是温度这个数据吧。说出来你可能不信,温度这个数据本身是毫无意义的。我们之所以看到第二天的温度是0℃时,会穿上厚厚的衣服,是由于我们日复一日对于所处环境的切身感受而形成的认知。

当我们脱离熟悉的环境,比如到从未去过的远方旅游时,这个温度数据的参考价值就会大打折扣。城市的0℃,草原的0℃,山区的0℃,以及海边的0℃所代表的含义,我相信相去甚远吧。

所以,用户想获知的是温度数据吗?其实并不是,用户想知道的是应该涂抹什么样的护肤品,需要穿什么样的衣服,以什么样的交通方式出行合适等等。墨迹天气,提供了用户想知道的天气预报~

(墨迹天气界面)

从以上的事例中,我们可以得到以下启示:

1. 数据反映事物的表象,信息反映事物的本质;

2. 数据经过加工处理之后就成为了信息,而信息需要经过数字化转变成数据之后才能存储和传输;

3. 数据是用于表示客观事物的未经过加工的原始材料,信息的基本作用是消除人们对于事物了解的不确定性;

4. 数据更多代表的是实现方式,是我们所说的技术思维,而信息代表的则是用户价值,是需求分析过程中我们应该把握的产品思维。

数据与信息是有距离的,而这个距离就是“why”所带来的,多问问用户为什么要看到这些数据,甚至于这些数据有什么作用,我们就会“发现新大陆”,也就能够更深入地理解其中的需求。

信息管控

我之前看到过一句对于当前时代的评价话语,感觉特别有意思:“这个时代数据是爆炸了,但信息却很贫瘠”我觉得这句话还真的挺有道理,不信的话,我们接着往下看。

考勤系统,大家就算没有设计过,也都使用过吧。我们知道,考勤系统最主要的内容,就是各种数据了。那什么样的考勤系统,才是最完美的考勤系统呢?是收集了所有竞品的软件说明书之后,做到人无我有,人有我优么?非也~这种设计思路,正是导致上面那句时代评语的原因所在~

我们来看一个事例,员工迟到统计报表,这是最常见的考勤系统的报表了吧。我们有多少人,深入思考过企业为什么需要这张报表呢?我们来试着深入分析一下:

(1)员工迟到统计报表—>(2)统计哪些员工出现了迟到行为—>(3)统计出来扣钱—>(4)评估员工的积极性。

我们可以看到,前三步全都是方案级需求,而第四步才是问题级需求,这一步也正是企业的信息管控点所在。如果我们只是单纯地收集了竞品内容,而加上相应报表的话,那只是单纯地仿其形,而未悟其神。

那我们该如何思考呢?既然我们知道了,企业的问题级需求是评价员工的积极性,那我们可以咨询企业用户,什么样的员工是不积极的,然后本着用数据把这样的员工找出来的思路,就可以找到更多潜在的业务报表了。

例如离岗时间统计报表,因为老板发现有些烟民会在工作过程中出去抽烟,一根5分钟,一天一包就是100分钟!我们可以用数据把他们抓出来!再比如员工代打开分析,我们把两张工卡在多次出现1-3秒钟内打卡成功的记录都抽出来,这样他们就无处逃避了!

针对以上的案例,我们可以看到,“员工积极性评价”是信息管控点,是why;“员工迟到统计报表”是解决方案,是how;而出勤情况、代打卡、有效工时,则是针对员工积极性评价的“指标”。信息管控点的“why”与解决方案的“how”之间存在断层,补充这个断层的方法就是思考出“指标”。

需要指出的是,针对同一信息管控点,不同的企业、不同的组织、不同的管理者都有可能会使用不同的“指标”来实现这一管理意图。所以说因地制宜,在需求分析的过程中就显得尤为重要。

数据分析

我们上文给出了一个观点:数据更多代表的是实现方式,是我们所说的技术思维。那我们来看一下,针对数据层面,我们应该如何思考,然后在原型或者PRD文档中,又应该给我们的研发人员传递怎样的内容吧。

1. 数据应用分析:

哪些流程会用到该数据?

在这些流程中会创建、查询、修改、删除该数据的记录吗?

每个流程需要使用的数据字段有哪些?

2. 数据构成分析:

该业务数据由哪些字段构成?

这些字段是什么类型的?

这些字段的最大长度是?

它们有取值范围吗?

它们是非空的吗?

它们是自动编号的吗?

3. 数据特点分析:

哪些字段是常用的?

哪些字段常为空值?

哪些字段会作为关键字搜索?

哪些是稳定的,哪些有扩展需求?

数据记录的增长速度有相应的规律吗?

多长周期的数据可视为历史数据?

结语

好了,以上就是我们今天的所有的内容了,至此为止,我们需求分析的系列文章,也就全部解读完毕了。

最后,说一下自己的感悟吧。此系列文章,我们从一个生活中的故事入手,我们讲述了用户思维的孩子,技术思维的妈妈与产品思维的爸爸,探讨了不同的思维方式;而后,我们又沟通了价值需求的内容,我们知道了,如何将那些放之四海而皆准的目标愿景进行细化;接下来,我们对于整天都在探讨的业务流程与业务场景进行了系统的学习;最后,我们厘清了数据与信息之间的关系。

我最大的收获是明白了,需求分析并不是什么高深的理论模型,而是一种思维方式,是一种思考角度。很多时候我们都知道,需求是客观存在的,就在用户那里,但是我们往往面临着无从下手的窘境,或者是如“鬼打墙”一般无法走出去的困境。此系列内容,似乎让我找到了前进方向的灯塔。不知道,一路走来的你,又有何感悟呢?

我们在开篇中给出了一张贯穿始末的“需求全景图”,最后的最后,我们还是以这张图收个尾吧。

这里是“晓庄同学产品笔记”,如果我有帮助到您,也希望您能够帮助我一下,您点击的每一次“在看”,每一次的分享,每一次的赞赏,哪怕是一块钱,都是笔者不断前行的动力。晓庄同学在此叩谢!

接下来我会为大家准备送书福利,以感谢大家一直以来的支持。而且下个系列的内容,我也已经准备好了,请给我一些时间吧,我很快就会回来的。


0条评论 添加新讨论

登录后参与讨论
Ctrl+Enter 发表